Physics > Basic Modern Physics > 5.0 Photoelectric Effect

  Basic Modern Physics
    1.0 Photon theory of light
    2.0 Characteristics of photon
    3.0 Wave Particle Duality
    4.0 Emission of electrons
    5.0 Photoelectric Effect
    6.0 Radiation Pressure And Force
    7.0 Photon Density
    8.0 Force exerted by a light beam on a surface
    9.0 Early Atomic Structures
    10.0 Bohr Model of The Hydrogen Atom
    11.0 Energy of electron in the $n^{th}$ orbit
    12.0 Basic Definitions
    13.0 Atomic Excitation

5.5 Graph between $K{E_{max}}$ and frequency
$$K{E_{\max }} = h\nu - W$$

Clearly, it takes the form of $y = mx + c$ where $c$ ($y$-intercept) = $-W$ and m(slope)= $h$, which is a universal constant.

So, slope of two metals $A$ and $B$ is same.

Similarly, a graph can be plotted between ${V_0}$ and $\nu$ by the following modified equation
$${V_0} = \left( {\frac{h}{e}} \right)\nu - \left( {\frac{W}{e}} \right)\quad \quad \left( {{\text{from equation 2}}} \right)$$





Question 4. What is the energy (in $eV$) of a photon of wavelength $12400{\text{ }}\mathop {\text{A}}\limits^0 $?

Solution: Using Planck's formula, we have $$\begin{equation} \begin{aligned} E = hf = \frac{{hc}}{\lambda } \\ {\text{where }}h = 6.63 \times {10^{ - 34}}{\text{ }}J{\mkern 1mu} s;c = 3 \times {10^8}{\text{ }}m{\mkern 1mu} {s^{ - 1}};\lambda = 12400 \times {10^{ - 10}}{\text{ }}m \\ E = \frac{{\left( {6.63 \times {{10}^{ - 34}}} \right)\left( {3 \times {{10}^8}} \right)}}{{12400 \times {{10}^{ - 10}}}} = 1{\text{ }}eV{\text{ (approx)}} \\\end{aligned} \end{equation} $$

Note: In general, a photon of wavelength $\lambda $ ( in $\mathop {\text{A}}\limits^0 $ ) will have energy ( in $eV$ ) as given by $E = 12400/\lambda $.


Question 5. The stopping potential for photoelectrons emitted from a surface illuminated by light wavelength of $5893 {\text{ }}\mathop {\text{A}}\limits^0 $ in $0.36 V$. Calculate the maximum kinetic energy of photoelectrons, the work function of the surface, and the threshold frequency.

Solution: We know that $$\begin{equation} \begin{aligned} \quad \quad KE{_{max}} = hf - \phi = \left( {\frac{{hc}}{\lambda }} \right) - \phi \\ {\text{or }}\phi = \frac{{hc}}{\lambda } - KE{_{max}} \\ {\text{Also, }}KE{_{max}} = e{V_s} = 0.36{\text{ }}eV \\ \Rightarrow \quad \quad \phi = \frac{{\left( {6.62 \times {{10}^{ - 34}}} \right) \times \left( {3 \times {{10}^8}} \right)}}{{5893 \times {{10}^{ - 10}}}} - 0.36 \times {10^{ - 19}} \\ \quad \quad \;\,\,\quad = 1.746{\text{ }}eV \\\end{aligned} \end{equation} $$

The threshold frequency is given by $$\begin{equation} \begin{aligned} {f_0} = \frac{\phi }{h} = \frac{{2.794 \times {{10}^{ - 19}}}}{{6.62 \times {{10}^{ - 34}}}} = 4.22 \times {10^{14}}{\text{ }}Hz \\ \\\end{aligned} \end{equation} $$


Question 6. A beam of light has three wavelengths $4144{\text{ }}\mathop {\text{A}}\limits^0 $, $4972{\text{ }}\mathop {\text{A}}\limits^0 $ and $6216{\text{ }}\mathop {\text{A}}\limits^0 $ with a total intensity of $3.6 \times {10^{ - 3}}\ W{m^{ - 2}}$ equally distributed among the three wavelengths. The beams fall normally on an area $1.0\ c{m^2}$ of a clean metallic surface of work function $2.3$ $eV$. Assume that there is no loss of light by reflection and that each energetically capable photon ejects one electron. Calculate the number of photoelectrons liberated in $2$ seconds.

Solution: We know that threshold wavelength (${{\lambda _0}}$) = $hc$/$\phi $
$$\begin{equation} \begin{aligned} {\lambda _0} = \frac{{\left( {6.63 \times {{10}^{ - 34}}} \right)\left( {3 \times {{10}^8}} \right)}}{{2.3 \times \left( {1.6 \times {{10}^{ - 19}}} \right)}} = 5404{\text{ }}\mathop {\text{A}}\limits^0 \\ \\\end{aligned} \end{equation} $$
Thus, wavelength $4144{\text{ }}\mathop {\text{A}}\limits^0 $ and $4972{\text{ }}\mathop {\text{A}}\limits^0 $ will emit electrons from the metal surface.

Energy incident on the surface per unit time for each wavelength
$$\begin{equation} \begin{aligned} = {\text{Intensity of each wavelength }} \times {\text{ Area of the surface}} \\ = \frac{{3.6 \times {{10}^{ - 3}}}}{3} \times \left( {1.0{\text{ c}}{{\text{m}}^2}} \right) = 1.2 \times {10^{ - 7}}\ W \\\end{aligned} \end{equation} $$

Number of photons $n_1$ due to wavelength $4144{\text{ }}\mathop {\text{A}}\limits^0 $,

$$\begin{equation} \begin{aligned} {n_1} = \frac{{\left( {2.4 \times {{10}^{ - 7}}} \right)\left( {4144 \times {{10}^{ - 10}}} \right)}}{{\left( {6.63 \times {{10}^{ - 34}}} \right)\left( {3 \times {{10}^8}} \right)}} = 0.5 \times {10^{12}} \\ \\\end{aligned} \end{equation} $$
Number of photons $n_1$ due to wavelength $4144{\text{ }}\mathop {\text{A}}\limits^0 $,

$$\begin{equation} \begin{aligned} {n_2} = \frac{{\left( {2.4 \times {{10}^{ - 7}}} \right)\left( {4972 \times {{10}^{ - 10}}} \right)}}{{\left( {6.63 \times {{10}^{ - 34}}} \right)\left( {3 \times {{10}^8}} \right)}} = 0.575 \times {10^{12}} \\ {\text{So, }}N = {n_1} + \,\,{n_2} = 0.5 \times {10^{12}} + 0.575 \times {10^{12}} \\ \quad \quad \quad \quad \;\;\,\, = 1.075 \times {10^{12}} \\\end{aligned} \end{equation} $$
Improve your JEE MAINS score
10 Mock Test
Increase JEE score
by 20 marks
Detailed Explanation results in better understanding
Exclusively for
JEE MAINS and ADVANCED
9 out of 10 got
selected in JEE MAINS
Lets start preparing
DIFFICULTY IN UNDERSTANDING CONCEPTS?
TAKE HELP FROM THINKMERIT DETAILED EXPLANATION..!!!
9 OUT OF 10 STUDENTS UNDERSTOOD